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Abstract. We use a variational approach to study Abelian vortices, both the ordinary and 

bosonic superconducting variety. We present accurate results for the energy per length. For 

superconducting strings we map out the parameter space of solutions, quantify the critical 

current, study the quench transition, and investigate the possiblityof static solutions where 

electromagnetic stresses balance the string tension. 
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In recent years there has been keen interest in cosmic strings, both the ordinary Nielsen- 

Olesen’ and the superconducting’ varieties. Even for ordinary cosmic strings there are 

few precise results3-5. In this letter we report the results of a detailed variational analysis 

of both ordinary cosmic strings and bosonic superconducting cosmic strings (hereafter, 

BSCS). The full details of our calculations will be presented elsewhere6. 

We study the strings which arise in the simple U(1) @ V(1)’ model of WittenZ, with 

the scalar potential 

V(@,o) = -m;l@lz + Xo/@14/3! + 3m;/2Xa - m;loI’ + X,/~1~/3! + fj@/*/~(~ 0) 

where @ is a complex scalar field which carries no U(1) charge and U(l)’ charge Q, and 

o is a complex scalar field which carries no V(1)’ charge and ordinary electric charge e. 

(Coleman-Weinberg’ potentials are also considered in Ref. 6.) 

Ordinary Cosmic Strings. First we consider ordinary V(1)’ vortices, both gauged and 

global (i.e., q = 0) by ignoring the o field in Eqn(1). The potential V(Q) = V(Q,u = 0) 

has its global minimum at 1@(2 = 02/2, w h ere ij2 = 6mi/xo. The mass of the physical 

Higgs particle is m & = 2m.i and the mass of the vector boson is mv = qij. We define the 

dimensionless ratio b = 2m$/m& = 6pz/Xo. For b > 2 (b < 2) the vortices correspond 

to type I (type II) superconductivity in the Glnzburg-Landau theory. Note too, that the 

global case corresponds to the formal limit b + 0. 

While b is formally arbitrary, its natural range, 10e2 < b 2 102, is defined by other con- 

siderations: (1) perturbativity, which requires X0 5 \/;i;;; (2) radiative corrections’, which, 

unless forbidden or cancelled due to symmetry considerations (e.g., supersymmetrys), re- 

quire a Xe term of the order of @’ (or larger); (3) 4 is expected to be O(e). 

Assuming cylindrical symmetry about the z-axis, appropriate for long straight strings 

or loops with radius > their width, the Hamiltonian per unit length is 

I&. = fdrd6[18@/LIr12 + Ir-‘aB/r36 - iqA@/’ + V(Q) + B”/2] 
I 

where 6 is the azimuthal angle, r the radial coordinate, and B’ the magnetic flux associated 

with the vortex (in the global case q = 0 and B’ = 0). 

The general vortex solution with winding number W is of the form: Q = 

(0/JZ)P(r)e’W~. The limiting behaviour of P(r) is: P(t ---+ co) -+ 1 and P(r + 0) -P 

O(riWl). In the gauged case: Ak(r + co) + W/q and Ab(t + 0) -+ O(r). We restrict 

our analysis to the W = 1 vortex. In the global case and in the gauged case for b < 2, 

jWI 2 2 vortices are unstable to decay into IWJ vortices of unit vorticity. For 6 > 2, 

JW) >_ 2 vortices are stable and may be of some cosmological interest, as one would expect 

them to also form in the early Universe. 
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As variational ons&e we take: P(r) = (1- e-rr) and AI, = (1- c-h’)2/qr, where /.L-’ 

and h-i are the width of the vortex and magnetic flux tube respectively, and 2x/q the total 

flux in the flux tube. It is convenient to define the following dimensionless parameters: 

a = mi/p2 and s = p/h. In terms of these, the size of the vortex hL-i - firnil, and the 

size of the magnetic flux tube - s times that of the vortex. 

Using the above ansdtze we have solved for the variational parameters w and h by 

minimizing l?e. For the global vortex, a = 1.6 and the energy per length E is: E= 

(0.75 + ln~A)&, where as expected E is log-divergent, and ,h is the cutoff length (e.g., 

the distance to the nearest string or the size of a string loop). In Fig. 1 we display our 

results for the gauged vortex as a function of b. For b + 0 the size of the vortex a -P 1.6, 

the global result. In general a is of the order of unity, and decreases with increasing b. 

The size of the magnetic flux tube relative to the vortex s, is about unity for b = 2, and 

as expected s decreases with increasing b. 

In general, E is rather insensitive to b, varying by less than a factor of 30 for b = 10-s 

to 10’. Over the natural range of b, E is well approximated (to better than 5%) by 

E = l.lg,& b-0.1Q5 

Our results for the energy per length agree with the exact result3 for b = 2 (E = d), and 

the very accurate numerical results4 for 0.9 < b 5 8 to better than 2%. They agree to the 

accuracy that comparison is possible (- 10%) with the semi-quantative results of Ref. 5 

for the range: 0.04 5 b 5 400. We have also added additional terms to our ansdtre, and 

over the entire range of b our results for E only decreased by at most 1%. 

The fact that the energy per length is very insensitive to b is of some cosmological 

importance. Cosmic strings are a promising candidate for the origin of the primeval density 

inhomogeneities needed for the formation of structure in the Universe if the string tension 

E is of the order of 10-6m$l, or perhaps higher9 (mpr N 1.22 x 1OrQ GeV). Cosmic strings 

are produced in the phase transition in which @ acquires its vacuum expectation value 

(VEV); the critical temperature for this transition is: T,’ - 0z/(1 + b), which is naturally 

of the order of Q - fi, and for the string tension of interest is about 10m GeV. If the 

Universe underwent inflationlO, such a high value for Z’, is problematic. 

To avoid being diluted by inflation, strings must be produced after inflation (or near the 

very end of inflation). Based upon the production of long wavelength gravitational waves 

during inflation, there is an upper limit of - 3 x 10” GeV to the highest temperature 

achieved after inflation. Of more practical concern are the highest temperatures which 

are typically achieved in inflationary models: owing to the scalar density perturbation 

constraint the maximum temperatures achieved after inflation are typically very low”’ 
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(< IOr GeV). Thus, on the face of it is difficult to have both inflation and cosmic strings. 

However, our results indicate that one can have a high string tension and low value for T, - 

b-‘/2d/2, providing one is willing to tolerate an unnaturally large value for b (unnatural, 

unless the radiative corrections are suppressed for some reason). 

Bosonic Superconducting Strings. We will now consider the full theory, by studying 

the o condensate in the unperturbed, background vortex solution of the Q field. We refer to 

this as the ‘concrete vortex approximation’, and will return to discuss its realm of validity. 

For the moment we will also take the current to be zero. 

The potential V(C-,u) is specified by the 5 parameters: ma, m,, A+, A,, and f. 

However, we find it much more convenient to instead use only 3 of the above parameters 

and the two new parameters: 

Q s rnz /p2 = arnz/mi 0 E fv2/2p2 = 3afjX.Q 

By employing a and a, the parameter space where BSCS solutions exist can be described 

by two algebraic constraints, and an allowed region in the cr-p plane. 

First the algebraic constraints: the stability of the global, unbroken U(1) vacuum 

requires that 

constraint 1: d/L c mi1.b constraint 2 : @>a (orfiP/2>mz) 

These 2 constraints preclude the existence of a global o condensate, but still permit the 

possibility of one in the vortex where @ = 0 and the f-term no longer stabilizes the o part 

of the potential. Of course, having such a condensate costs both kinetic energy (as (T must 

go from o # 0 in the core, to o = 0 far from the vortex) and potential energy (due to 

the f(Q12[ujZ term). The solution region of the a-p plane is determined by energetics- 

solutions will exist wherever a o condensate lowers the vortex energy. 

Due to the (I field there are additional terms in the Hamiltonian per length 

iiI=O = ii@ f & (= J rdrdO[lf30/i3r12 + r-21t3a/LW12 +V(@ = 0,~) + fj@j21bj2] 

In the concrete vortex approximation we can consider the global and gauged cases together, 

the only difference being the value of a. For the o field ansatz we use: o(t,.z,r,0) = 

(ao/~)e-r’(l+nr+n’r2+n”r3)ei~(‘~’), which has four variational parameters (00, n, A?, 

and KY); the full onaatt is only used to monitor the convergence of the truncated ansatz, 

u = (a,/&+- crei+(t,T). We also introduce one additional dimensionless ratio, the size 

of the o condensate relative to the size of the vortex, z s /J/K. (remember p has already 

been fixed). The VEV of the charged o field within the vortex signals that the string is 
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superconducting; the phase d(t, 2) gives rise to the current and is the massless mode which 

provides the longitudinal degree of freedom for the photon on the string. 

Using this ens&r we have mapped out the regions of a-/3 space where it is energetically 

favorable for a o condensate to form; i.e., the regions where the minimum value of I&, is 

negative (and occurs for o(: > 0). Those regions are shown in Fig. 2. Roughly speaking, 

they form a wedge, beginning at a = l/i’ and for large a, p bounded by the lines: p = a 

and B = 0.5a’,Q3. (Note that for a = p + 0 it can be shown analytically that solutions 

also exist2p6.) The solution space mapped by our truncated ena& differs only slightly from 

the one mapped by our full ansatz. Except near the upper boundary of solution space the 

energies found by the full and truncated ansdtze agree very well (better than 10%). 

By simultaneously determining all the variational parameters (p, n, and uo) we have 

studied the validity of our ‘concrete vortex approximation’. We find that the only region 

of a-/3 space where there is significant ‘back reaction’ of the u condensate upon the vortex 

is near the line p = a, and only if constraint 1 is saturated, i.e., rnk/xo G m:/x.,; 

otherwise the ‘concrete vortex approximation’ is a very good one. That the back reaction 

should be significant when constraint 1 is saturated should come as no surprise, as in 

this case the two fields have comparable vacuum energies. 

Critical Currents and the Quench Transition. Now we allow the BSCS to carry a 

current. Currents on the string arise due to the twisting of the phase of the o field along 

the string. Taking the phase to vary as 4 = 2nNz/L, where L is the length of the wire 

and N is the net topological phase twist, one can directly solve Maxwell’s equations2p6. 

The current is I = 2rN/eLw, where w = [l + “K Zr ln(nL)]/e2K is essentially an inductance 
per unit length, and K = 2rJ tdr~~(r)~ = 7rcr,2/2n2. 

Due to the current there are additional contributions to the Hamiltonian per length: 

the KE of the charge carriers and the magnetic field energy, which together are given by 

I?r = w12/2. The ratio of the magnetic field energy to the KE of the charge carriers is 

e2Kln(nL)/2?r, and except for the region near the upper boundary of solution space thii 

ratio > l-in this respect a BSCS is like an ordinary current carrying wire. 

The persistence of the current in a BSCS loop owes to the conservation of the topolog- 

ical phase twist N. The o field can only untwist itself in a process where o locally becomes 

zero and the phase of o becomes undefined. A BSCS loop cannot, however, carry an arbi- 

trarily large current. For a sufficiently high current it becomes energetically favorable for 

the o field to locally relax to zero allowing the phase to untwist. Consider the pieces of I? 

associated with the o condensate: the noncurrent piece If, is < 0, while the current piece 

fir is > 0; note too that for 00” = 0, I?,, + fir = 0. Thus the critical current is achieved 
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when f!In + g1 becomes nonnegative. In the limit that K > 1 the critical current is 

Icrit = nP l2 

d-- 

x, ln(nL) (az - /3zF(z) - 2-1) 

where F(Z) = (x4 + 6z3 + 62)/(z4 + 6z3 + 132 + 122 + 4). The factor involving 5, a, 

and p is easily computed and in general is of the order of the parameter a. 

For I > Icrit, the o pieces of fi have their global minimum at uo = &-, + gV = 0; 

however, because of the logarithm in the expression for the current, over a substantial 

region of solution space I?, + fir still has a local minimum for oc # 0 with fiV(oo) + 

J?~(oc) > 0, indicating that the transition associated with the loss of superconductivity is 

first order. Presumably the quench transition proceeds through the nucleation of bubbles 

of true vacuum (within which cro = 0); depending upon the bubble action, supercritical 

currents may be me&table with significant lifetimes. 

Static, or Floating Loops. It has been suggested that BSCS loops might be able to 

achieve a static state where electromagnetic stresses balance the loop string tension11v12. 

That this might occur is easy to understand. Neglecting numerical factors the energy of 

a loop of length L is: E - 8-L + LIZ, the first term is the mass of the loop and the 

second term is the electromagnetic field energy. As the loop oscillates, it radiates both 

electromagnetic and gravitational radiation, and shrinks. Conservation of the phase twist 

N means that both the current I cc N/L and the magnetic field energy - LIZ cc l/L 

must increase as the loop shrinks. Assuming that the loop remains superconducting, it 

eventually shrinks to a size Lstotie - N/O where its total energy achieves its minimum. In 

this floating state electromagnetic stresses balance the string tension. The crucial question 

is whether or not the static state is achieved before the critical current is exceeded. 

The total energy of a loop of length L is: E(L) = L(I?a + &., + A?(). (Note that in 

general the energy of a superconducting loop with subcritical current is less than that of 

an ordinary loop since fi,, + 21 is necessarily negative.) It is straightforward to solve for 

the length Latotie which minimizes the above energy. Since I cx l/L, we can also solve 

for the length Lerit at which the current reaches the critical current. The existence of a 

stable, floating state then requires that L.t.ti, > Lcrit. 

We have studied our variational solutions and find that such states only exist when 

m‘ilb = m;/A, and pm a (* f=v%x/3) 

This occurs in the region of solution space where back reaction is significant (not surprising) 

and so in our analysis we have solved for all the variational parameters simultaneously. 

For the global case only floating states with sizes less than some maximum size exist, as 
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(for fixed parameters) the energy per length of the loop depends logarithmically upon the 

size of the loop and sufficiently large loops will require supercritical currents. 

In sum, we can say that the region of solution space where the floating state can be 

achieved with subcritical current is very tiny: in the space of solutions BSCS’s which can 

float are very much the exception. If there are floating BSCS’s, they can be a cosmological 

disaster, es we now describe. A current can be induced in a BSCS if it moves through 

a region of magnetic field in the early Universe. The existence and origin of primeval 

magnetic fields is an interesting and unresolved question. ,Irrespecfive of primeval fields, 

currents will develop in BSCS loops in a manner analogous to how strings and monopoles 

are produced in the early Universer3. When the o condensate forms (which for simplicity 

we assume occurs when the vortices form) the phase of the o field cannot smoothly align 

itself on distance scales larger than the horizon at that time, i.e., its correlation length 

(0 5 to (to is the time of the phase transition). Because of this a length of string LO 

will necessarily have a phase twist of the order (Lo/&,)‘/~, and hence a current I - 

2n(Lo/&~)‘/~/eLw, which one might refer to as the ‘Kibble current’. Loops of size LO form 

by breaking off from long strands of string when the age of the Universe is about t - Lo. 

Once such loops shrink to their floating state their mass remains constant and they behave 

like nonrelativistic matter with a msss density which decreases only as av3 (a(t) is the scale 

factor of the Universe). Using the birthrate9 of loops of size LO (c~ t-41tZ~,) it is simple to 

compute the mass density contributed by floating loops at time t: pfroot N e11/2t-3/2/m$,, 

(valid when the Universe is radiation dominated). If floating loops are not to overdominate 

the mass density of the Universe today, 0 must be less than - 5 x 1013 GeV. Of course, if 

they saturate this bound floating loops contribute D z 1 and would be the dark matter. 

This work was supported in part by the DOE (at Fermilab and Chicago) and by the 

NASA (at Fermilab). 
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Figure Captions 

Figure l-The energy per length (solid curve), vortex size a, and flux tube size s for a 

gauged string over the natural range of b. Results over a much extended range are given 

in Ref. 6. 

Figure Z-The a-p parameter space of solutions (region between solid curves), and the 

range of z (s p/n) vs. a (region between broken curves). 
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